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Numerical solution of the Kardar-Parisi-Zhang equation with a long-range spatially correlated noise
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The Kardar-Parisi-Zhang (KPZ) equation for stochastic surface growth is numerically integrated in
the presence of a long-range spatially correlated noise and the scaling behavior of the growing surfaces is
investigated. A robust methodology for simulating the colored noise directly from uniform random vari-
ates is used with the discretized KPZ equation. The sample functions are expressed in terms of harmon-
ic functions and the powerful fast Fourier transform is used. The growth exponents a and S are calcu-
lated and the results are compared with the predictions by Medina et al. [Phys. Rev. A 39, 3053 (1989)],
Zhang [Phys. Rev. B 42, 4897 (1990)], and with the numerical results of Amar et al. [Phys. Rev. A 43,
R4548 (1991)] and Peng et al. [Phys. Rev. A 44, R2239 (1991)]. The agreement of the present results
with the theoretical prediction by Medina et al. shows that the current method of colored noise simula-

tion is uniquely effective.

PACS number(s): 05.40.+j, 05.70.Ln, 02.60.Cb

I. INTRODUCTION

The physical significance of the Kardar-Parisi-Zhang
(KPZ) equation [1] has become widely recognized in
nonequilibrium statistical mechanics. As a nonlinear
generalization of the diffusion equation, it describes many
diverse processes, of which the study of stochastically
growing surfaces has attracted extensive attention in re-
cent years. The KPZ equation can be applied to the
growth of many rough surfaces [2,3] such as crystal
growth, vapor deposition, fluid flow in porous media, and
biological growth.

The surface is specified by the height A(r,¢) at position
r and time ¢, with the initial condition specified as
h(r,0)=0. The surface with w(L,?) on length scale L at
time ¢ initially increases with time, and without any
characteristic length scale, it grows with some power of
time, w(L,t)~t8. After the length over which the fluc-
tuations are correlated becomes comparable to the length
L, the surface evolves to a steady state with a constant
value of its width, which is expected to have a power law
dependence on L, w(L,t— o« )~L* The dependence of
w(L,t) on ¢t and L can be combined into the dynamic
scaling form [4,5,6,7]:

w(L,t)~L%f(t/L*F) (1)

with the scaling function f(x)~x? for x <<1 and
f(x)=const for x >>1, which suggests that the charac-
teristic time 7~ L %A, The exponents a and S can also be
measured by studying various types of surface correlation
functions, such as the height difference correlation func-
tion,
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G(r,t)={({[h(r,t)—(h(t)) ]—[h(r+r,t+t’)
—(he+e) D2, 2)
where G (7,0)~7r%for r <<L and G (0,¢) ~ 15 for t << .

II. KPZ EQUATION AND ITS NUMERICAL SOLUTION

Kardar, Parisi, and Zhang [1] have proposed a con-
tinuous model for the time evolution of the profile of a
growing interface, namely

Oh(r,t)
at

This model takes into account both the relaxation of
the surface with a surface tension v and the lateral
growth with the growth velocity proportional to A.
7(r,t) represents the noise. Based on first-order perturba-
tive renormalization-group analysis, Kardar, Parisi, and
Zhang [1] found that for the white noise 7(r,?), the scal-
ing exponents are =7 and B=1 for spatial dimension
d =2. To date, there have been a large number of numer-
ical studies performed on Eq. (3). Amar and Family [8],
Chakrabari and Toral [9], Guo, Grossmann, and Grant
[10,11] have carried out the numerical solution of Eq. (3)
using white noise.

However, the white noise assumption may not always
be justified physically. Medina et al. [12] have con-
sidered a generalization of the nonlinear KPZ equation
with the noise term having long-range correlations in
space and/or time. The noise spectrum S (k,w) is chosen
as

=vV2h(r,t)+%[Vh(r,t)]2+71(r,t) . (3)
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S(k,w)~ k| 2w 20 . 4)

Using the same first-order renormalization-group method
for d =2 they predicted that for the noise only spatially
correlated (6=0), for 0<p<0.25 the exponents a=1
and B=1 remained the same as for white noise, but, for
0.25<p<l,a=1+2p/3 and B=(1+2p)/(5—2p).
Zhang [13] developed some other predictions via replica
scaling analysis. His results, based on the equivalent
directed polymer problem, were B=a/(2—a)=(1
+2p)/(3+2p) for 0<p<1/2. Margolina and Warrier
[14] studied the surface growth with the restricted solid-
on-solid (RSOS) growth model of Kim and Kosterlitz
[15]. They pointed out that their results agreed with
Zhang’s prediction for p<1. Amar et al. [16] also car-
ried out the simulations for both the ballistic deposition
and the RSOS model, and Peng et al. [17] presented the
numerical simulations of ballistic-deposition (BD) and
directed-polymer (DP) models. Their results agreed with
the prediction of Medina et al.

In the present work, the KPZ equation was integrated
on a discrete grid using a finite-difference scheme. The
largest grid size used was L =2'7=131072. The discrete
form of Eq. (3) used is

h, 1 (D)=h () +AT{v[h (i—1)+h (i+1)—2h_(i)]
+(A/8)[h i +1)—h (i—1)]?
+7n.(0)} . (5)

The parameter v is set equal to unity and calculations
were carried out with different values of A ranging from 1
to 10. It was found that for small A, the exponent a and
B are close to the values associated with the linear equa-
tion as expected. When A gets larger (A > 4) the resulting
values of a and S have little dependence on A. In the
final results, A was set to 6. The Gaussian white noise in
the work of Amar and Family [8] was replaced by the
long-range spatially correlated noise, generated by the
method introduced originally by Shinozuka [18] and re-
vised over the years [19], and used effectively for some
stochastic studies [20,21].

The stochastic one-dimensional noise was simulated by
the following series as N — o0

_N-—1
Nx)=V2 S A,coslk,x+®,), 6)
n=0

where A4, =[2S(k,)Ak]"% k,=nAk, Ak=k,/N, and
Ay=0, or S(ky)=0. k, represents an upper cutoff wave
number beyond which S (k) may be assumed to be zero.
The ®, appearing in Eq. (6) are independent random
phase angles distributed uniformly over the interval
[0,27]. The period of the stochastic process is
Xo=2m/Ak. N is the number of grids used in the noise
simulation, while L is the integer measure of the length
scale of surface. Because the noise generation is indepen-
dent and can be applied to other problems, this N should
be distinguished from L. However, since we take one
period of the simulated noise in order to assure the exact
correlation, N and L were set to equal.

In this study, the stochastic field is spatially correlated
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FIG. 1. Log-log plot of noise-noise correlation R () vs r. (a)
p=0.3 when the fitted line with 200 sites shows the effective
p'=0.3; (b) p=0.5 when the effective p’~0.44 fitted with 55
sites.

and temporally uncorrelated. The power spectrum densi-
ty S (k,w) is

S(k,w)=S(k)=k ™% . (7

The noise-noise correlation function R (r) for the generat-
ed noise was computed for p=0.0-0.5, and the log-log
plot of R (r) vs r shows that when p =0.3 the correlation
function R () follows the expected r*~!. But for large
p, the simulated noise has smaller value, and at the ex-
treme end for p=0.5, the simulated noise decays with
p' ~0.44, where p’ is the value of p obtained from simu-
lated noise and will be referred to as “effective” p. Figure
1 shows the log-log plot of the noise-noise correlation
function R (r) vs r with (a) p=0.3 and (b) p=0.5. In Fig.
1(b) it can be seen that the curve is not linear as r in-
creases. This is due to the fact that the noise correlation
itself has singularity at r =0. When p is larger, the power
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FIG. 2. Simulated one-dimensional noise 7(x) (p=0.5).
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FIG. 3. Simulated done-dimensional surface growth accord-
ing to the KPZ equation with a long-range spatially correlated
noise (p=0.5). Each drawn surface was 50 time steps apart,
with the time step At =0.05.

spectrum density S (k) decays more sharply near zero,
which involves larger error when we set S (0)=0 for the
use of fast Fourier transform (FFT). The effective p’ was
found to scale over a range of 200 sites except for p=0.5,
in which case the range was 55 sites. In the results
presented below, the effective p’ was used.

The noise distribution 7(x) with spatial correlation was
generated independently at each time step (thus yielding
a noise 8 correlated in time). Smaller time steps were
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FIG. 4. Log-log plot of w vs t for L =131072, time step,
At=0.05 and A=6. (a) p=0.25; (b) p=0.5.
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FIG. 5. Log-log plot of G(r,0) vs r for L =131072, time step
At=0.05, 10° time steps and A=6. (a) p=0.0; (b) p=0.5.

used to ensure convergence and it was indeed verified
that the obtained results were numerically stable. Figure
2 shows the simulated one-dimensional noise 1(x). Fig-
ure 3 shows the simulated surface growth at different
times.

The exponents a and 8 which characterize the scaling
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FIG. 6. Growth exponent 8 as a function of the correlation
exponent p. Dashed curve is the prediction by Zhang. Solid
curve is the prediction by Medina et al.
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FIG. 7. Roughness exponent a as a function of the correla-
tion exponent p. Dashed curve is the prediction by Zhang.
Solid curve is the prediction by Medina et al.

behavior w(L,t)~L%f(t/L*P) are important parame-
ters in this study. They were obtained in the following
manner: For each value of p, the exponent B was deter-
mined from the slope of the log-log plots of the surface
width w vs time, which were obtained from runs of the
order of 10° time steps, with averages taken over five
runs. Figure 4 shows the log-log plot of w vs ¢; the sur-
face roughness exponent a was determined from the
slope of the log-log plots of the correlation function
G(r,t) vs distance r at later times (z~10° time steps).
The range of scaling is 128 sites. Due to the nature of

this specific noise correlation, the error at small 7 is ex-
pected, and only a few points ( = 10 out of 128) for small r
is somewhat off the fitted line. Figure 5 shows the log-log
plot of the height-height correlation function G(r,t) vs r
after 10° time steps. Figures 6 and 7 show the results of
the growth exponent 8 and roughness a, respectively, as
functions of p, from the numerical solution of the KPZ
equation with a long-range spatially correlated noise.
The obtained results are also compared with different
predictions by Medina et al. [12] and Zhang [13] in these
figures.

III. CONCLUSION

Extensive numerical simulations of the KPZ equation
subjected to a long-range spatially correlated noise were
carried out using a methodology involving uniform ran-
dom variates and FFT. The results are in good agree-
ment with the prediction by Medina et al. [12] and the
simulation results by Amar et al. [16] via RSOS and
ballistic models and Peng et al. [17] via BD and DP mod-
els. This study shows that the critical point p,., where a
and S start to vary from the values corresponding to the
white noise, is smaller than the predicted value p=0.25
by Medina et al. The general agreement of the present
results with the theoretical prediction of Medina et al.
also shows that the unique method of colored noise simu-
lation is effective. This method of simulation can be easi-
ly extended to simulate a three-dimensional noise
n(x,y,t), and is thus applicable to the case where a spa-
tially two-dimensional surface grows according to the
KPZ equation. A work in this direction is in progress.
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